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Abstract

The dynamic single-facility single-item lot size problem is addressed. The finite planning horizon is divided into

several time periods. Although the total demand is assumed to be a fixed value, the distribution of this demand among

the different periods is unknown. Therefore, for each period the demand can be chosen from a discrete set of values. For

this reason, all the combinations of the demand vector yield a set of different scenarios. Moreover, we assume that the

production/reorder and holding cost vectors can vary from one scenario to another. For each scenario, we consider as

the objective function the sum of the production/reorder and the holding costs. The problem consists of determining all

the Pareto-optimal or non-dominated production plans with respect to all scenarios. We propose a solution method

based on a multiobjective branch and bound approach. Depending on whether shortages are considered or not, dif-

ferent upper bound sets are provided. Computational results on several randomly generated problems are reported.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since the late 1950s, special attention has been paid to the dynamic lot sizing problems. The interest lies

in the fact that these models fit a great number of real world problems. Wagner and Whitin [24], and in-

dependently, Manne [9] pioneered this field. They assumed a multiperiod planning horizon with known

demand, and proposed a procedure which is based on both the dynamic programming approach and the

zero inventory order (ZIO) property. This property states that, among all those optimal plans, there exists

at least one, in which for each period, the product between the stock level and the production/reorder

quantity must be equal to zero. This cost-minimizing production/reorder schedule has interesting quali-

tative features. The extension to backlogging was studied by Zangwill [25,27] and Manne and Veinott [10].
Also, Veinott [20] introduced the case with convex costs.
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Unlike the original dynamic lot size problem [24], where the demands through the whole horizon are
known, in this paper we consider that the demand vector is unknown rather than the total demand, which is

assumed to be a fixed value. Furthermore, for each period, the demand can be chosen from a discrete finite

set. As a result, different scenarios can arise combining the different admissible values of the demand per

period. One of the most common examples for this problem are the promotions to clear stock. In this case,

although we know in advance the total number of items to be sold we can not determine an optimal reorder

plan because it is impossible to know with certainty how the demand is to occur period per period. Another

instance happens when a wholesaler of bricks should satisfy the demands for distinct builders. Despite the

wholesaler may know in advance the total demand of bricks needed to carry out the different constructions,
he does not know how this total demand is distributed through the planning horizon. However, the decision

maker can assume that the demand per period is taken from a discrete finite set. Besides, we allow in our

model that the production/reorder and holding cost vectors change from one scenario to another. Taking

into account these assumptions, the decision maker can not predict what scenario is to occur. Therefore,

this problem concerns with the optimization under uncertainty and, it takes place when a firm has to make

a decision under variable market conditions. In fact, the uncertainty is present up to a point in almost all

the decisions made in the real world.

How to handle the uncertainty in the scenario occurrence is not easy at all. One may want to come up
with a unique solution using conservative techniques or the principle of incomplete reason (utilities). On the

other hand, one may want to obtain the whole range of solutions that are non-dominated component-wise,

as a first step in the analysis of the problem, in order to shed light on the decision process. This set can be

seen as a sensitivity analysis of the admissible solutions of the scenario problem for any �a priori� infor-
mation on the occurrence of the scenarios. The former analysis is normative: it prescribes a concrete course

of action (based on a utility), the latter is descriptive: it informs on the variability of the solution space.

Both analyses have advantages and disadvantages. The final decision should be made according to the goals

of the decision-maker. Notice that our goal in this paper is to study the second approach. It is worth re-
marking that similar analysis has been followed for other scenario problems in the recent literature of

operations research (see for instance [4,5,13,16]).

Dantzig [7] mentions the importance of considering uncertainty in the systems. In this sense, the so-

called scenario analysis has been developed to deal with the problem of the uncertainty. Assuming that all

the different situations of the system can be identified, this approach calculates the non-dominated solu-

tions. These solutions are robust with respect to any possible occurrence because they are non-dominated,

component-wise, by any other. Therefore, the approach consists of obtaining the Pareto-optimal solution

set.
This article is devoted to the problem of determining the Pareto-optimal policies for the multiscenario

dynamic lot sizing problem. For each scenario, we assume a planning horizon split into N periods. Three N -
tuple vectors represent the input data for each scenario: a deterministic demand vector, the carrying cost

vector and the replenishment cost vector. Also, in the backlogging case, a shortage cost vector is consid-

ered. As usual, when shortages are not allowed, the overall cost function consists of the sum of carrying and

replenishment costs. The goal is to schedule production/reorder in the various periods of each scenario so as

to satisfy demand at minimal cost simultaneously in all the scenarios.

The problem introduced in this paper fits into the multiobjective combinatorial optimization (MOCO).
MOCO problems are an emergent area of research in many fields of operations research (see e.g. [6,19]).

Nowadays, MOCO (see [3,19]) provides an adequate framework to tackle various types of discrete mul-

ticriteria problems. Within this research area, several methods are known to handle different problems. Two

of them are dynamic programming enumeration (see [22] for a methodological description and Klamroth

and Wiecek [8] for a recent application to knapsack problems) and implicit enumeration [15,28,29]. In

particular, the branch and bound scheme corresponds to an implicit enumeration method and, although it

is widely used in the single objective case, only a few papers apply this technique for MOCO since bounds
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may be difficult to compute (see, e.g. [1,14,21]. The reader is referred to [3] for a complete survey of MOCO
methods).

It is worth noting that most MOCO problems are NP -hard and intractable. In most cases, even if the
single objective problem is polynomially solvable, the multiobjective version becomes NP -hard. This is the
case of spanning tree problems and min-cost flow problems, among others. As we have mentioned, an

important tool to deal with these problems is the multicriteria dynamic programming (MDP) [3]. In the

single objective case Morin and Esoboque [11] exploited the embedded-state recursive equations to over-

come many of the problems caused by the curse of the dimensionality (see, for example, [2,12]). As an

extension of the previous result, Villarreal and Karwan [22] introduced a procedure based on the dynamic
multicriteria discrete mathematical programming (DMDMP) to generate the Pareto-optimal solution set

for problems with more than one objective function. We will make use of these techniques to resolve our

model. In this context, when time and efficiency become a real issue, different alternatives can be used to

approximate the Pareto-optimal set. One of them is the use of general-purpose MOCO heuristics [6].

Another possibility is the design of �ad hoc� methods based on computing the extreme non-dominated
solutions. Obviously, this last strategy does not guarantee that we obtain the whole set of non-dominated

solutions. Nevertheless the reduction in computation time can be remarkable.

The rest of this paper is organized as follows. Section 2 introduces the notation and the model. In
Section 3, we show that when the objective function is concave and shortages are not allowed, the extreme

points of the region of feasible production plans satisfy a modified version of ZIO property, and that the

Pareto-optimal set will always contain modified ZIO solutions. Therefore, we propose an algorithm to

compute this approximated solution set: the non-dominated modified ZIO policies. A subset of such

policies will be used later as initial upper bound set in the general algorithm. Furthermore, in Section 4,

when shortages are allowed, we show that the polyhedron extreme points hold a modified version of the

property for the single scenario case. Again, a subset of the non-dominated policies satisfying the latter

property are proposed as the initial upper bound set for the algorithm when shortages are allowed. In
Section 5, we propose an MDP algorithm that solves the problem and a branch and bound scheme to

reduce the computational burden of the above MDP. Also, in Section 6, computational results are re-

ported for a set of dynamic multiscenario lot size problems. Finally, Section 7 contains conclusions and

some further remarks.
2. Notation and statement of the problem

We consider a dynamic production/inventory system with a finite planning horizon of N periods where
an external known demand must be met at minimal cost. It is assumed that M scenarios or replications of

that system are to be considered simultaneously and a unique (robust) policy belonging to the Pareto-

optimal set is to be implemented. These replications model uncertainty in the parameter estimation, since

neither the true values of the parameters of the system nor a probability distribution over them are known

before hand. Therefore, we look for compromise solutions which must behave acceptably well in any of the

admissible scenarios. This sort of system represents a multiple/serial decision process, since each scenario

behaves as a serial multiperiod decision system and each production/reorder decision implies a parallel
decision process. A graphical representation of this process is shown in Fig. 1.

Throughout we use the following notation:

hjið�Þ holding cost for the jth period in the ith scenario.
cjið�Þ production/reorder cost for the jth period in the ith scenario.
Iji inventory on hand at the end of the jth period in the ith scenario.
dji the demand for the jth period in the ith scenario.



Fig. 1. The multiscenario lot size problem scheme.
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D the total demand ð
PN

j¼1 d
j
i ¼

PN
j¼1 d

j
s for any i and s in f1; . . . ;MgÞ.

xj the production/reorder quantity for the jth period.

We assume, without loss of generality, that I0i ¼ INi ¼ 0 for i ¼ 1; . . . ;M .
The following definitions are required to simplify the formulation of the problem. Given a production/

reorder vector x ¼ ðx1; . . . ; xNÞ 2 NN
0 , with N0 ¼ N [ f0g, the inventory level vector for a scenario i is

denoted by IiðxÞ ¼ ðI1i ; . . . ; INi Þ, where
Iji ¼ Ij	1i þ xj 	 dji ; j ¼ 1; . . . ;N : ð1Þ

In addition, the cumulative cost from period j to period k in scenario i is given by
Rj;k
i ðxÞ ¼

Xk
t¼j

rtiðxt; I ti Þ; ð2Þ
where rtiðxt; I ti Þ ¼ ctiðxtÞ þ htiðI ti Þ:
Therefore, the total cost vector R xð Þ in all the scenarios for a production/reorder vector x 2 NN

0 is as

follows:
RðxÞ ¼ R1;NðxÞ; . . . ;R1;NðxÞ
� �

: ð3Þ
1 M
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Then, the Pareto-optimal or non-dominated production/reorder plans set P can be stated as
P ¼ fx 2 NN
0 : there is no other y 2 NN

0 : RðyÞ6RðxÞ;
with at least one of the inequalities being strictg; ð4Þ
where RðyÞ6RðxÞ means that R1;Ni ðyÞ6R1;Ni ðxÞ for i ¼ 1; . . . ;M .
Using the previous definitions, we can state the dynamic multiscenario lot size problem (DMLSP), or P

for short, as follows:
ðPÞ v	minðR1;N1 ðxÞ; . . . ;R
1;N
M ðxÞÞ

s:t::

I0i ¼ INi ¼ 0; i ¼ 1; . . . ;M ;

Ij	1i þ xj 	 Iji ¼ dji ; j ¼ 1; . . . ;N ; i ¼ 1; . . . ;M ;

xj P 0; integer; j ¼ 1; . . . ;N ;

Iji P 0; j ¼ 1; . . . ;N ; i ¼ 1; . . . ;M ;

ð5Þ
where v	min stands for finding the Pareto-optimal set. Thus, the goal consists of determining the Pareto-
optimal solutions with respect to the M objective functions. The first constraint in P forces both the initial
and the final inventory level to be zero in all the scenarios. The second constraint set concerns the well

known material balance equation, and hence it states the flow conservation among periods in all the sce-

narios. Production/reorder quantity must be always a non-negative integer. Finally, the last constraints set
in P disallows shortages.
Since the single objective version for this problem can be solved using a dynamic programming algo-

rithm, it seems reasonable to apply MDP for problem P : Accordingly, let F ðj; Ij	11 ; . . . ; Ij	1M Þ be the set of
the reachable non-dominated values, which correspond to production/reorder subplans (subpolicies) from

the state ðI j	11 ; . . . ; Ij	1M Þ at period j. Since there are finitely many non-negative integers xj that satisfy (1), the
principle of optimality gives rise to the following functional equation:
F ðj; ðIj	11 ; . . . ; I j	1M ÞÞ ¼ v	min
xj2N0

cj1ðxjÞ
..
.

cjMðxjÞ

2664
3775

8>><>>: þ
hj1ðI

j	1
1 þ xj 	 dj1Þ

..

.

hjMðI
j	1
M þ xj 	 djMÞ

2664
3775� F ðjþ 1; ðI j1; . . . ; I

j
MÞÞ

9>>=>>;; ð6Þ
where A� B ¼ faþ b : a 2 A; b 2 Bg for any two sets A;B.
Therefore, the set of Pareto-optimal production/reorder plans of problem P is given by the policies

associated with the vectors in the set F ð1; 0; . . . ; 0Þ, and hence MDP algorithms give a solution for our
problem. However, due to the inherent curse of the dimensionality of the MDP approach, we introduce a

branch and bound scheme to decrease the running times of the solution method. For this reason, before

introducing our procedure, we propose two upper bound sets to be applied in the branch and bound al-
gorithm. According to Villarreal and Karwan [22], a set of upper bounds is a set of vectors such that each

element is either efficient or is dominated by at least one efficient solution. Thus, the first upper bound set

concerns the case without shortages and the second one represents the upper bound set for when stockouts

are allowed.

In the next section, we propose an initial upper bound set assuming that both the carrying and the

production/reorder costs are concave and stockouts are not permitted.
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3. Case without shortages

In this section we assume that the cost function Rj;k
i ðxÞ is concave in x for i ¼ 1; . . . ;M , j ¼ 1; . . . ;N and

kP j. Therefore, the following inequality holds:
R1;Ni ðxþ 1Þ 	 R1;Ni ðxÞ6R1;Ni ðxÞ 	 R1;Ni ðx	 1Þ; ð7Þ
where the plan x� 1 differs from plan x only in two periods where one unit of production/reorder is added

or subtracted. In other words, let j and k be the periods (components) where the plan x is to be modified,

then xþ 1 equals to x excepting in period j where one more production/reorder unit is added and in period
k where one production/reorder unit is subtracted. On the other hand, the plan x	 1 equals to x excepting

in the period j in which one production/reorder unit is subtracted and in period k where one production/
reorder unit is added.

Notice that the single objective model given in [24] can be formulated as a network flow problem (see

[26]). Considering concave costs, the solutions for the single objective version of this problem lie on extreme
points of the feasible polyhedron. Furthermore, for each partition over the state set, there is always a

representative plan satisfying that I j	1xj ¼ 0 for any period j: This property is commonly known as zero
inventory ordering (ZIO). Therefore, we can use an OðN 2Þ algorithm (see [24]) to determine the minimum
cost plan via pairwise comparison.

We define now the ZIO property for the multiscenario case as follows: a plan x is said to be ZIO for P if
and only if
xjminfI j	11 ; . . . ; Ij	1M g ¼ 0 for j ¼ 1; . . . ;N : ð8Þ

It is worth noting that this modification is the natural extension of the corresponding property in the

scalar case. As it will be shown subsequently, efficient ZIO policies play an important role in the deter-

mination of the Pareto set because they represent the set of basic solutions, namely, extreme solutions of P .
For the sake of simplicity, we formulate problem P as a multicriteria network flow problem since efficient
ZIO plans correspond to acyclic flows in the network as well. Accordingly, assuming non-negative concave

costs, the underlying network for this problem, depicted in Fig. 2, is as follows. Let G ¼ ðV ;EÞ be a directed
network, where V stands for the set of n ¼ ðN þ 2ÞM þ 1 nodes, and E represents the set of m ¼ 3MN edges.
The nodes are classified in: production/reorder node (node 0), demand per scenario nodes nds, s ¼ 1; . . . ;M ,
and intermediate nodes. The intermediate nodes are organized per layers. Thus, in layer j, there are M
nodes denoted by njs s ¼ 1; . . . ;M , j ¼ 1; . . . ;N þ 1.
There are M arcs from node 0 to each layer. The flow entering these arcs is the same. It can be seen as a

single flow that is virtually multiplied M times so that the same amount is directed to each one of the nodes

in this layer. These arcs can be considered as a pipeline that at a certain point is transformed into M
branches. Each one of these branches receives exactly the same flow that the one that enters through the

initial node of the arc. The arc from production/reorder node 0 to layer j is related to the production/re-
order variable xj in period j. The virtual multiplication of the production/reorder is because the different
scenarios do not occur simultaneously in reality. Actually, only one of them is to occur, and we are con-

sidering simultaneous (parallel) network flow problems with the same kind of input. The arc from 0 to njs
has a cost cjsð�Þ, s ¼ 1; . . . ;M and j ¼ 1; . . . ;N :
In addition, there are also arcs from njs to n

jþ1
s s ¼ 1; . . . ;M and j ¼ 1; . . . ;N : Each arc in this category is

an inventory arc associated to the state variables Ijs and its cost is h
j
sð�Þ: Finally, there are arcs leaving each

node njs towards nds with flow values d
j
s s ¼ 1; . . . ;M and j ¼ 1; . . . ;N :

We proceed now to show that non-dominated ZIO policies represent the set of extreme solutions of

problem P . Previously, let us consider first the explicit representation of the multicriteria node-arc incidence
matrix A in which the rows correspond to the M blocks of N þ 2 constraints of problem P .



x1 x2 � � � xN I11 � � � IN	11 IN1 � � � I1M � � � IN	1M INM

ð0; 1Þ ð0; 2Þ � � � ð0;NÞ ð1; 2Þ � � � ðN 	 1;NÞ ðN ;N þ 1Þ � � � ð1; 2Þ � � � ðN 	 1;NÞ ðN ;N þ 1Þ

0 1 1 � � � 1 0 � � � 0 0 � � � 0 � � � 0 0

1 )1 0 � � � 0 1 � � � 0 0 � � � 0 � � � 0 0

2 0 )1 � � � 0 )1 � � � 0 0 � � � 0 � � � 0 0
..
. . .

. . .
. . .

. . .
.

N 0 0 � � � )1 0 � � � )1 1 � � � 0 � � � 0 0

N þ 1 0 0 � � � 0 0 � � � 0 )1 � � � 0 � � � 0 0
..
. . .

. . .
. . .

. . .
.

0 1 1 � � � 1 0 � � � 0 0 � � � 0 � � � 0 0

1 )1 0 � � � 0 0 0 0 1 � � � 0 0

2 0 )1 � � � 0 0 � � � 0 0 )1 � � � 0 0
..
. . .

. . .
. . .

. . .
.

N 0 0 � � � )1 0 � � � 0 0 � � � 0 � � � )1 1

N þ 1 0 0 � � � 0 0 � � � 0 0 � � � 0 � � � 0 )1

Fig. 2. The network of problem P .

168 J. Guti�errez et al. / European Journal of Operational Research 156 (2004) 162–182
Notice that each block of N þ 2 rows represents a scenario and the columns are divided in two groups:
the first N columns are related to the arcs from the producer node to the N periods, and the rest of columns
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concern the inventory holding between two consecutive periods for each scenario. Using the above matrix A
and denoting by x ¼ ðx1; . . . ; xN Þ and I ¼ ðI11 ; . . . ; IN1 ; . . . ; I1M ; . . . ; INMÞ it is straightforward that we get the
constraints set of problem P as follows:
ðx; IÞAt ¼ 	ð	D; d11 ; . . . ; dN1 ; 0; . . . ;	D; d1M ; . . . ; dNM ; 0Þ:
Proposition 1. The constraint matrix A for problem P has rank MN þ 1.

Proof. Indeed, each block of N þ 2 rows has one row (e.g. the last one) being linearly dependent since the
sum by blocks equals zero. According to this argument, the rank is, at most, MðN þ 1Þ. In addition, in the
remaining matrix the row corresponding to node 0 appears M times (one per block), hence ðM 	 1Þ of them
could be removed resulting in a matrix with MN þ 1 rows.
Now, removing the last constraint in each block and using the columns corresponding to

xN ; I11 ; . . . ; I
N
1 ; . . . ; I

1
M : . . . ; I

N
M , a triangular matrix is obtained with elements in the diagonal equal to one.
ð9Þ
Therefore, since a submatrix with rank MN þ 1 exists the result follows. �

The following theorem states that the basic solutions for our problem fulfill that the demand in each

period is satisfied from either the production/reorder in that period or the units carried in the inventory, but
not by both simultaneously. Thus, in the underlying network of the problem, each node (excepting the

production/reorder node) is attainable either from the production/reorder node or from the predecessor

holding node, but never from both. Hence, the graph associated to the non-null variables of any feasible

basic solution verifies for any period j : either xj ¼ 0 or minfI j	11 ; . . . ; Ij	1M g ¼ 0:
Theorem 2. Any basic solution of problem P fulfills that xjminfIj	11 ; . . . ; I j	1M g ¼ 0 for any period j,
j ¼ 1; . . . ;N .
Proof. Assume without loss of generality that the variables x1; x2 are non-null. Let us consider the columns
that correspond with these variables and the inventory carrying variables from period 1 to 2, i.e. I11 ; . . . ; I

1
M .

The matrix has two columns ð0; 1Þ and ð0; 2Þ, for the variables x1 and x2; and M columns, one per scenario

for the I1s variables s ¼ 1; . . . ;M .
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x1 x2 I11 I12 � � � I1M
ð0; 1Þ ð0; 2Þ ð1; 2Þ ð1; 2Þ � � � ð1; 2Þ
þ 	 þ þ � � � þ
1 1 0 0 � � � 0

	1 0 1 0 � � � 0

0 	1 	1 0 � � � 0

..

. ..
.

0 0 0 0 � � � 0

1 1 0 0 � � � 0

	1 0 0 1 � � � 0

0 	1 0 	1 � � � 0

..

. ..
.

0 0 0 0 � � � 0

1 1 0 0 � � � 0

	1 0 0 0 � � � 1

0 	1 0 0 � � � 	1
� � �

0 0 0 0 � � � 0

266666666666666666666666666666664

377777777777777777777777777777775

:

It is easy to see that the linear combination of columns with coefficients þ1;	1;þ1; � � � ;þ1 gives the null
vector. Therefore, all the considered variables can not be part of any basic solution. Hence, the condition

holds. �

For linear cost problems this results implies that there is always a non-dominated ZIO policy. However,

for general concave cost problems this results must be proven.

Proposition 3. The Pareto-optimal solution set of problem P contains, at least, one ZIO policy.

Proof. By contradiction, assume that all ZIO policies are dominated. Let z be a non-extreme efficient point

such that zmakes the function R1;Ni ð�Þminimal. That is, z is a plan with cost smaller than or equal to the rest
of non-dominated policies in the ith scenario. We can assert that z exists, otherwise, the efficient point that
minimizes R1;Ni ð�Þ would be an extreme point and the theorem would follow. Furthermore, assume x being a
feasible extreme point such that the following inequality holds:
R1;Ni ðzÞ < R1;Ni ðxÞ:

We can also guarantee that x always can be found, otherwise, R1;Ni ðzÞ ¼ R1;Ni ðxÞ for all the extreme points

x, that is, the ith component of the cost vector of x equals to the minimal value for this component and z

could have been taken an extreme point.

Also, by concavity of the cost functions, the following expression must be fulfilled:
R1;Ni ðhzþ ð1	 hÞxÞP hR1;Ni ðzÞ þ ð1	 hÞR1;Ni ðxÞ;
where h is a scalar that ranges in ½0; 1�.
In addition, let p be a point on a facet of the feasible set such that p is aligned with z and x; and z can be

expressed as a convex combination of p and x. Hence, the following inequality holds:
R1;Ni ðhxþ ð1	 hÞpÞP hR1;Ni ðxÞ þ ð1	 hÞR1;Ni ðpÞ:
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Since z is minimal for R1;Ni ð�Þ
R1;Ni ðzÞ6R1;Ni ðpÞ:

Taking ĥ such that z ¼ ĥxþ ð1	 ĥÞp, the following expression holds:
R1;Ni ðĥxþ ð1	 ĥÞpÞ ¼ R1;Ni ðzÞP ĥR1;Ni ðxÞ þ ð1	 ĥÞR1;Ni ðpÞ:

Notice that R1;Ni ðzÞ < R1;Ni ðxÞ and R1;Ni ðzÞ6R1;Ni ðpÞ, then we have that
R1;Ni ðzÞP ĥR1;Ni ðxÞ þ ð1	 ĥÞR1;Ni ðpÞ > ĥR1;Ni ðzÞ þ ð1	 ĥÞR1;Ni ðzÞ ¼ R1;Ni ðzÞ:

That is, R1;Ni ðzÞ > R1;Ni ðzÞ, which is a contradiction. �

Since we know that there exist Pareto policies satisfying the ZIO property and the procedure in (6) that

computes the complete Pareto set has a large complexity, we are now interested in determining the Pareto

policies within the ZIO plans. This may be considered in some cases as an approximation to the actual Pareto

set (indeed, ZIO plans coincide with extreme solutions as Theorem 2 shows). The fact is that the non-
dominated ZIO policies represent an initial upper bound set to be used in the branch and bound algorithm.

In order to compute the Pareto ZIO plans, we need to introduce some notation. Let IðjÞ denote the set of
state vectors at the beginning of period j. Notice that Ið0Þ ¼ IðN þ 1Þ ¼ ð0; . . . ; 0Þ. In addition, let
Dj;k

i ¼
Pk	1

t¼j d
t
i be the accumulated demand from period j to k in scenario i and let ðI

j	1
1 ; . . . ; Ij	1M Þ 2 IðjÞ be a

given state vector in period j. Moreover, let us admit that there is a null component in ðI j	11 ; . . . ; Ij	1M Þ, hence
the decision variable xj should be distinct to zero to prevent shortages. Thus, the feasible decisions set
corresponding to a state vector ðI j	11 ; . . . ; Ij	1M Þ in period j is given by
Wðj; ðI j	11 ; . . . ; Ij	1M ÞÞ ¼
0; if Ij	1i > 0 for all i;
max
16 i6M

f0;Dj;k
i 	 Ij	1i g; k ¼ jþ 1; . . . ;N þ 1; otherwise:

(

Assuming that ðIj	11 ; . . . ; Ij	1M Þ contains a component equal to zero, it can be easily proved that any decision
xj 6¼ max16 i6M f0;Dj;jþl

i 	 Ij	1i g, l ¼ 1; . . . ;N þ 1	 j, results in a non-ZIO policy.
Accordingly, given a period j and an inventory vector ðIj	11 ; . . . ; Ij	1M Þ 2 IðjÞ, the set F ðj; ðI

j	1
1 ; . . . ; Ij	1M ÞÞ

of cost vectors corresponding to Pareto ZIO subpolicies for the subproblem with initial inventory vector

ðIj	11 ; . . . ; Ij	1M Þ is as follows:
F ðj; ðIj	11 ; . . . ; Ij	1M ÞÞ ¼ v	min
xj2Wðj;ðIj	11

;...;Ij	1M ÞÞ

cj1ðxjÞ
..
.

cjMðxjÞ

2664
3775

8>><>>: þ
hj1ðI

j	1
1 þ xj 	 Dj;jþ1

1 Þ
..
.

hjMðI
j	1
M þ xj 	 Dj;jþ1

M Þ

2664
3775� F ðjþ 1; ðIj	11

þ xj 	 Dj;jþ1
1 ; . . . ; Ij	1M þ xj 	 Dj;jþ1

M ÞÞ

9>>=>>;:

ð10Þ
Notice that the whole set of Pareto ZIO policies for P is determined when F ð1; ð0; . . . ; 0ÞÞ is achieved.

Proposition 4. The MDP algorithm for problem (10) runs in Oð4NM2Þ.

Proof. Given an initial inventory vector ðIj	11 ; . . . ; I j	1M Þ 2 IðjÞ, it is clear that xj can only take values in
Wðj; ðIj	11 ; . . . ; Ij	1M ÞÞ to satisfy property (8). Thus, if I

j	1
i 6¼ 0 for all i, the number of decisions for state

ðIj	11 ; . . . ; Ij	1M Þ is at most N 	 jþ 1, otherwise the unique decision is xj ¼ 0. Each different decision leads to
a new state vector in the following period, hence the maximum number of states at the beginning of stage
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jþ 1 is N 	 jþ 1 as well. Remark that the computational effort to make up the accumulated demands
matrix DMxN ¼ fdi;j ¼ Dj;Nþ1

i g is OðMNÞ, and also OðMðN 	 jÞ þ 1Þ comparisons must be carried out to
obtain the maximum values. Hence, the determination of Wðj; ðIj	11 ; . . . ; Ij	1M ÞÞ requires of OðMðN 	 jÞ þ 1Þ
operations.

By virtue of the ZIO property, there are at most two vectors reaching one state in period 2 and, at most,

four vectors can achieve any state in period 3. In general, in one state of period j there are at most 2j	1

vectors to be evaluated via pairwise comparisons. Therefore, the number of comparisons for one state of

period j is given by Oðð2j	1ð2j	1 	 1Þ=2ÞMÞ: Accordingly, the number of comparisons in period j is
Oððð2j	1ð2j	1 	 1Þ=2ÞMÞðMðN 	 jÞ þ 1ÞÞ: Thus, the procedure carries out OðM

PN
j¼2 2

j	2ð2j	1 	 1ÞðMðN 	
jÞ þ 1ÞÞ comparisons, and hence the complexity is Oð4NM2Þ. �

As Proposition 4 states, the implicit enumeration process of the whole set of efficient ZIO policies for P
requires a number of operations which grows exponentially with the input size. This is not a surprising

result since the multicriteria network flow problem, which is in general NP -hard (Ruhe [17]), can be reduced
to the problem we deal with.

From the computational point of view, the algorithm based on (10) is inefficient, hence we propose a
different approach to obtain an approximated solution set. This method consists of obtaining the optimal

solution for each scenario in OðN 2Þ. Notice that, as a consequence of disallowing shortages, some of these
solutions could be infeasible for problem P . In this case, all the scenarios with infeasible solutions are solved
again using a demand vector where each component corresponds to the marginal maximum demand,

namely, the jth value in this vector coincides with ðmax16 i6M fD1;jþ1i g 	max16 i6M fD1;ji gÞ: Remark that
the demand vector obtained in this way is a ZIO plan and, hence, is feasible for P . Moreover, the com-
putational effort to determine this set of policies is OðMN 2Þ: In addition, these plans can also be used as the
starting upper bound set of the branch and bound scheme when shortages are not permitted.
We proceed below to analyze the case when both the carrying and the production/reorder costs are

concave and shortages are permitted.
4. Case with shortages

This section is devoted to the case in which inventories on hand are not restricted to be positive. When Iji
is negative, it now represents a shortage of 	Iji units of unfilled (backlogged) demand that must be satisfied
by production/reorder during periods j through N .
We assume, for simplicity, that hjiðIji Þ represents the holding/shortage unit cost function for period j in

scenario i. When I ji is non-negative, h
j
iðIji Þ remains equal to the cost of having Iji units of inventory on hand

at the end of period j in scenario i. When I ji is negative, h
j
iðIji Þ becomes the cost of having a shortage of 	Iji

units of unfilled demand on hand at the end of period j in scenario i.
In the single scenario version, there exists at least one period with inventory on hand equal to zero

between two consecutive periods with production/reorder different from zero [25,27]. That is, if xj > 0 and
xl > 0 for j < l, then Ik ¼ 0 for at least one k so that j6 k < l. This idea is exploited to develop an OðN 3Þ
algorithm to determine an optimal policy [27].

Assuming that inventory levels are unconstrained, we can adapt the previous property to the multi-

scenario case as follows:
If xj > 0 and xl > 0 for j < l; then Iki ¼ 0; for some i and k; j6 k < l: ð11Þ
Unlike the ZIO property for the multiscenario case, the above expression allow us to obtain all the plans

satisfying (11) independently. In other words, any plan satisfying (11) for one scenario is to be feasible for
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the rest of scenarios, hence a straightforward approach to generate the whole plans set is to determine each
set (one per scenario) separately. Again, these plans play a relevant role for obtaining the Pareto set of

problem P with stockouts, since, as Theorem 5 shows, they represent the extreme points of the feasible set.
We can use again the network introduced in Section 3 to characterize the extreme solutions of P with

shortages. Accordingly, the following theorem states that such extreme points represent acyclic policies.

That is, demand in a period k is satisfied from the production/reorder either in a previous period ðj6 kÞ or
in a successor period ðlP kÞ. Therefore, in the underlying network of the problem, each node (excepting the
production/reorder node) is attainable from only one of the following nodes: the production/reorder node,

the predecessor holding node or the succesor backlogging node.

Theorem 5. Any basic solution for problem P with shortages is acyclic.

Proof. Following a similar reasoning to that in Theorem 2, let us select, for each block (scenario), any two

columns corresponding to production/reorder arcs in (9), e.g., columns j and l. Moreover, we select, for
each scenario, the columns related to periods j up to l. It is easy to see that a linear combination of these
columns with coefficients þ1;	1;þ1; . . . ;þ1 respectively, gives the null vector. Therefore, any basic so-
lution is acyclic. �

Proposition 6. The Pareto-optimal set of problem P with shortages contains, at least, one plan satisfying
property (11).

Proof. Similar to that in Proposition 3. �

Notice that not all the basic plans belong to the Pareto-optimal set and, the solution time required to

determine the whole non-dominated solutions set increases with the input data. Therefore, obtaining the
efficient plans among the extreme plans seems to be a reasonable approach, not only as approximation to

the real Pareto-optimal set but also as an upper bound set to be used in the branch and bound scheme.

Thus, taking into account that the feasible decisions set verifying (11) for one state ðIj	11 ; . . . ; Ij	1M Þ 2 IðjÞ is
as follows:
Uðj; ðIj	11 ; . . . ; Ij	1M ÞÞ ¼
0; if I j	1i > 0 for all i;

f0g [ f	Ij	1i þ Dj;k
i g;

k ¼ jþ 1; . . . ;N þ 1;
i ¼ 1; . . . ;M ;

otherwise;

8<:

we can now determine the non-dominated cost vectors set for the state ðIj	11 ; . . . ; Ij	1M Þ in period j according
to the following functional equation:
F ðj; ðIj	11 ; . . . ; I j	1M ÞÞ ¼ v	min
xj2Uðj;ðIj	11

;...;Ij	1M ÞÞ

cj1ðxjÞ
..
.

cjMðxjÞ

2664
3775þ

hj1ðI
j	1
1 þ xj 	 Dj;jþ1

1 Þ
..
.

hjMðI
j	1
M þ xj 	 Dj;jþ1

M Þ

2664
3775

8>><>>:
�F ðjþ 1; ðIj	11 þ xj 	 Dj;jþ1

1 ; . . . ; Ij	1M þ xj 	 Dj;jþ1
M ÞÞ

9>>=>>;:

ð12Þ
Remark that when F ð1; ð0; . . . ; 0ÞÞ is evaluated, the non-dominated solutions set satisfying (11) is achieved.

Proposition 7. The MDP algorithm for the problem (12) runs in OððMðMN þ 1Þ2N Þ=ð2ðMNÞ2ÞÞ.
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Proof. In period j, xj can take values from Uðj; ðI j	11 ; . . . ; Ij	1M ÞÞ. Accordingly, the maximum number of

states in any period is MðN 	 1Þ þ 1. Also, in one state of period j there are, at most, ðMN þ 1Þj	1 vectors.
Therefore, at most, ðMðMN þ 1Þj	1ððMN þ 1Þj	1 	 1ÞÞ=2 comparisons have to be made. Consequently, the
total number of comparisons is
O M
XN
j¼2
ððMN

 
þ 1Þj	1ððMN þ 1Þj	1 	 1ÞÞ=2

!
;

and hence the procedure runs in OððMðMN þ 1Þ2N Þ=ð2ðMNÞ2ÞÞ. �

Since the implementation of the algorithm based on (10) involves a number of operations, which in-

creases exponentially with the input size, we propose a different approach to obtain an approximated so-

lution set. This method consists of obtaining the optimal solution for each scenario in OðN 3Þ. Unlike the
case without shortages, all the single scenario solutions are to be feasible for problem P . Therefore, the
computational effort to determine the set of optimal solutions for each scenario is OðMN 3Þ, and these plans
are proposed as the starting upper bound set of the branch and bound scheme when shortages are allowed.
Once the initial upper bound sets for both shortages and not shortages situations have been introduced,

we present in the following section the branch and bound scheme, as well as an initial lower bound set to

determine the Pareto-optimal set.
5. The Pareto-optimal Set for the dynamic multiscenario lot size problem

Before introducing the solution method, we need some additional notation. Let Dj 2 NM
0 be a vector

where each component i ¼ 1; . . . ;M corresponds to D1;ji and, also, let T ðjþ 1; ðIj1; . . . ; I
j
MÞÞ denote the set of

cost vectors associated to subplans that attain the state vector ðIj1; . . . ; I
j
MÞ 2 Iðjþ 1Þ. That is,
T ðjþ 1; ðI j1; . . . ; I
j
MÞÞ ¼ fT ðj; ðI

j	1
1 ; . . . ; Ij	1M ÞÞ � ðr

j
1ðx; I

j
1Þ; . . . ; r

j
Mðx; I

j
MÞÞ : x 2 N0;

Ij	1i þ x	 Dj;jþ1
i ¼ I ji ; for all i and ðIj	11 ; . . . ; Ij	1M Þ 2 IðjÞg:
Since we are interested in calculating the non-dominated policies that reach the state
ð0; . . . ; 0Þ 2 IðN þ 1Þ, we must determine the efficient plans among those in T ðN þ 1; ð0; . . . ; 0ÞÞ via pairwise
comparison. As Villarreal and Karwan [22] pointed out, a necessary condition for a Pareto-optimal point is

that it must contain, as its first n	 1 components, an efficient solution to an ðn	 1Þ-stage problem, hence
the previous process must be applied in all the attainable states. Thus, the efficient subplans should be

selected in every attainable state. Therefore, we define T �ðjþ 1; ðIj1; . . . ; I
j
MÞÞ to be the set of non-dominated

subplans that attain the state ðIj1; . . . ; I
j
MÞ.

Moreover, the interval for the decision variable x can be calculated according to the following argument:
the lot size for the state ðIj1; . . . ; I

j
MÞ must be at least equal to zero or max16 i6M f0;Djþ1;jþ2

i 	 Iji g, respec-
tively, depending on whether shortages are permitted or not. On the other hand, the upper bound for the

interval corresponds to the remaining quantity to reach the total demand, hence x ranges in

½0;max16 i6M f0;Djþ1;Nþ1
i 	 Iji g� in case of allowing shortages or in ½max16 i6M f0;Djþ1;jþ2

i 	 I ji g;
max16 i6M f0;Djþ1;Nþ1

i 	 Iji g�, otherwise. In addition, given a period j, let s be the scenario so that D1;jþ1s ¼
max16 i6M fD1;jþ1i g: Then, we consider as initial state vector in IðjÞ either vector ðD1;jþ1s 	 D1;jþ11 ; . . . ;
D1;jþ1s 	 D1;jþ1M Þ, if shortages are not allowed, or vector ð	D1;jþ11 ; . . . ;	D1;jþ1M Þ otherwise. Thus, the rest of
vectors in IðjÞ are obtained just augmenting one unit each component as many times as D	 ðD1;jþ1s 	 D1;jþ1i Þ
or D	 ð	D1;jþ1i Þ for any i, respectively.
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Taking into account that Ið1Þ ¼ IðN þ 1Þ ¼ ð0; . . . ; 0Þ, we can now outline the MDP algorithm.

Algorithm 1. Determine the Pareto-optimal set for problem P
DATA: matrices dji , c

j
i , h

j
i , numbers M and N , and sets IðjÞ; j ¼ 1; . . . ;N þ 1

1: for j N downto 1 do

2: for all state ðIj1; . . . ; I
j
MÞ 2 Iðjþ 1Þ do

3: for all state ðI j	11 ; . . . ; Ij	1M Þ 2 IðjÞ do
4: if I ji 	 Ij	1i þ dji P 0 and Iji 	 Ij	1i þ dji ¼ Ijs 	 Ij	1s þ djs for i 6¼ s then

5: xj ¼ Iji 	 Ij	1i þ dji
6: insert xj and its cost vector in state ðIj	11 ; . . . ; Ij	1M Þ and update T �ðj; ðI

j	1
1 ; . . . ; Ij	1M ÞÞ

7: end if

8: end for

9: end for

10: end for

11: return T �ð1; ð0; . . . ; 0ÞÞ
Example 1. For the sake of completeness, we present the following numerical example to illustrate the

previous results for the case without shortages.
dji cji hji
j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 1 j ¼ 2 j ¼ 3

i ¼ 1 5 10 5 5 5 5 1 1 0

i ¼ 2 10 6 4 10 2 5 20 1 0

i ¼ 3 15 2 3 5 5 5 100 100 0
As you can see, all possible plans are collected in the graph depicted in Fig. 3. In this graph, each node
represents one state that is identified by its inventory level vector (in parenthesis). Also, within each node,

the partial cost vectors (in brackets) associated to subplans that attain this node are shown. Those subplans

which are dominated by any other subplan in the same node are marked with an asterisk. For each node,

the leaving arcs (arrows) represent the possible decisions for this node. The right-most node contains the

non-dominated solution set.

Fig. 3 illustrates also the case where a non-ZIO plan dominates a ZIO plan, namely, the ZIO plan

ð17; 0; 3Þ with cost vector f114; 326; 300g is dominated by the non-ZIO plan ð15; 3; 2Þ with cost vector
f113; 268; 200g.

Since Algorithm 1 becomes untractable as the difference ðD	max16 i6M fd1i gÞ increases, a branch and
bound approach is proposed. We first focus our attention on the case without shortages. The other case is

commented later on. We should reformulate problem P without shortages in a more appropriate way.
Accordingly, we denote by ðIn1 ; . . . ; InMÞ 2 Iðnþ 1Þ a state vector at the beginning of period nþ 1, and let
P ðn; ðIn1 ; . . . ; InMÞÞ be the set of Pareto-values of the subproblem consisting of periods 1 to n with final in-
ventory vector ðIn1 ; . . . ; InMÞ. Therefore, we can now state the problem as follows:



Fig. 3. Complete description of Pareto-optimal plans of Example 1.
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P ðn; ðIn1 ; . . . ; InMÞÞ ¼ v	min
Xn
j¼1

cj1ðxjÞ
"

þ
Xn	1
j¼1

hj1
Xj
k¼1

xk

 
	 D1;jþ11

!
þ hn1ðIn1 Þ; . . .;

Xn
j¼1

cjMðxjÞ þ
Xn	1
j¼1

hjM
Xj
k¼1

xk

 
	 D1;jþ1M

!
þ hnMðInMÞ

#

s:t::
Xk
j¼1

xj PD1;kþ1i ; k ¼ 1; . . . ; n	 1; i ¼ 1 . . . ;M ;

Xn
j¼1

xj ¼ D1;nþ1i þ Ini ; i ¼ 1 . . . ;M :

n n � n n
It is worth noting that P ðn; ðI1 ; . . . ; IMÞÞ ¼ T ðnþ 1; ðI1 ; . . . ; IMÞÞ: Now, it can be determined the Pareto
values of the complementary problem P ðnþ 1; ðIn1 ; . . . ; InMÞÞ, i.e., the problem consisting of periods nþ 1 to
N with initial inventory vector ðIn1 ; . . . ; InMÞ, as follows:
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P ðnþ 1; ðIn1 ; . . . ; InMÞÞ ¼ v	min
XN
j¼nþ1

cj1ðxjÞ
"

þ
XN	1
j¼nþ1

hj1 In1

 
þ
Xj
k¼nþ1

xk 	 Dnþ1;jþ1
1

!

þ hN1 In1

 
þ
XN
k¼nþ1

xk 	 Dnþ1;Nþ1
1

!
; . . . ;

XN
j¼nþ1

cjMðxjÞ

þ
XN	1
j¼nþ1

hjM In1

 
þ
Xj
k¼nþ1

xk 	 Dnþ1;jþ1
M

!

þ hNM InM

 
þ
XN
k¼nþ1

xk 	 Dnþ1;Nþ1
M

!#

s:t::
Xk
j¼nþ1

xj PDnþ1;kþ1
i 	 Ini ; k ¼ nþ 1; . . . ;N ; i ¼ 1 . . . ;M ;

XN
j¼nþ1

xj ¼ Dnþ1;Nþ1
i 	 Ini ; i ¼ 1 . . . ;M :
Remark that when shortages are allowed, the first set of constraints in both formulations P and P should
be removed. Again, the optimality principle gives rise to the following recursive equation which provides

the Pareto-optimal set for P :
F ð1; ð0; . . . ; 0ÞÞ ¼ v	min
ðIn
1
;...;InM Þ2Iðnþ1Þ
n¼1;...;N

ðP ðn; ðIn1 ; . . . ; InMÞÞ � P ðnþ 1; ðIn1 ; . . . ; InMÞÞÞ:
These equations along with upper and lower bound sets allow us to introduce the branch and bound

scheme into the dynamic programming heap. According to Villarreal and Karwan [22], a set LB of lower
bounds for a vector-valued problem is a set of points that satisfy the following conditions: (i) each element

is either efficient or dominates at least one of the efficient solutions of the problem, and (ii) each efficient

solution is dominated by at least one member of the set, or it is indeed a member of the set. In addition,

recall that a set UB of upper bounds is a set of points such that each element is either efficient or is
dominated by at least one efficient solution.

Assume that we know both lower bounds LBðnþ 1; ðIn1 ; . . . ; InMÞÞ for each subproblem P ðnþ 1; ðIn1 ; . . . ;
InMÞÞ and also global upper bounds UB for the original problem F ð1; ð0; . . . ; 0ÞÞ.
Consider f 2 Pðn; ðIn1 ; . . . ; InMÞÞ such that for any lb 2 LBðnþ 1; ðIn1 ; . . . ; InMÞÞ : f þ lbP u for some

u 2 UB. It is straightforward that the branch generated by f needs not being explored. Indeed, u 2 UB and,
therefore, there exists bf efficient (it may occur that lb ¼ bf ) so that bf 6 u. Hence, bf 6 f þ lb6 fþ (any
feasible completion). This implies that no completion of f can be efficient.
Once the branch and bound scheme has been outlined, the following step consists of determining how

the UB and LB sets are initialized. We set the UB with the non-dominated ZIO policies which are obtained
in previous sections. On the other hand, different LB sets can be determined depending on the cost functions
type. In case of linear costs, we propose two sets. The first concerns with the continuous relaxation of

the problem. The second approach consists of determining the optimal policies for each scenario using the
Wagelmans et al. algorithm [23] and applying, for each pair of optimal plans, a procedure to calculate the

lower envelope. Another case arises when the cost functions are concave. Under this assumption, Theorem

8 shows that a linear conversion of the cost functions reduces to the problem of finding a LB set for the
original problem.



Table 1

Parameter values for ten randomly generated problems

d c h

1 2 3 1 2 3 1 2 3

P1

S1 6 3 3 3 7 5 1 2 x

S2 7 2 3 2 3 2 6 5 x

P2

S1 7 4 4 2 7 8 1 1 x

S2 3 7 5 3 4 4 1 5 x

S3 7 3 5 7 3 4 1 1 x

P3

S1 6 7 2 2 6 5 1 2 x

S2 5 7 3 6 2 1 3 3 x

S3 6 6 3 5 4 5 2 4 x

S4 7 7 1 1 3 7 4 5 x

d c h

1 2 3 4 1 2 3 4 1 2 3 4

P4

S1 5 7 5 3 5 5 7 5 1 1 1 x

S2 7 5 3 5 7 5 5 5 1 1 1 x

P5

S1 5 6 5 4 1 5 5 3 2 1 1 x

S2 4 5 6 5 6 4 2 2 3 3 2 x

S3 6 4 4 6 2 1 2 3 5 4 3 x

P6

S1 3 9 7 5 7 3 5 6 4 1 2 x

S2 7 5 6 6 5 4 4 5 4 3 3 x

S3 7 5 5 7 7 5 5 2 5 5 4 x

S4 8 4 4 8 3 4 5 4 3 3 5 x

P7

S1 5 2 7 7 6 7 2 3 1 1 2 x

S2 10 5 4 2 7 7 6 1 3 1 4 x

S3 6 6 4 5 4 4 5 3 4 1 1 x

S4 11 3 4 3 2 8 6 7 1 1 2 x

S5 9 2 6 4 3 5 7 6 1 2 2 x

d c h

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

P8

S1 8 2 6 5 4 8 7 5 7 6 4 3 3 1 x

S2 5 5 5 5 5 1 6 7 5 6 1 2 2 2 x

S3 4 4 5 6 6 2 2 3 2 1 5 6 7 6 x

P9

S1 9 5 6 2 3 7 5 2 7 6 5 6 1 1 x

S2 10 3 5 3 4 8 3 6 4 2 2 1 4 3 x

S3 7 4 7 4 3 6 4 5 5 4 4 3 5 2 x

S4 8 5 4 3 5 5 6 4 6 5 1 2 7 5 x
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Table 1 (continued)

d c h

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

P10

S1 5 3 2 2 3 2 8 6 7 5 2 1 2 1 x

S2 7 3 2 1 2 6 3 5 5 2 5 3 2 4 x

S3 6 6 1 1 1 5 4 8 6 6 1 1 4 6 x

S4 8 1 3 1 2 4 8 7 6 5 4 2 5 3 x

S5 5 2 3 3 2 5 4 7 7 6 1 3 3 2 x
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Theorem 8. The Pareto-optimal solution set obtained with any linear function LðxÞ ¼ ðL1;N1 ðxÞ; . . . ; L
1;N
M ðxÞÞ

such that for any feasible x it holds R1;Ni ðxÞP L1;Ni ðxÞ, i ¼ 1 . . . ;M ; is a LB set for problem P .

Proof. Let us assume that the cost functions R1;ji defined in (2) are concave. Furthermore, let L1;Ni be a linear

function such that for any feasible x it holds R1;Ni ðxÞP L1;Ni ðxÞ, i ¼ 1 . . . ;M , and let LðxÞ ¼ ðL1;N1 ðxÞ; . . . ;
L1;NM ðxÞÞ.
Let us denote LB ¼ LðEðL1;N1 ; . . . ; L1;NM ÞÞ where EðL1;N1 ; . . . ; L1;NM Þ is the set of Pareto-optimal solutions of

the problem
v	minðL1;N1 ðxÞ; . . . ; L
1;N
M ðxÞÞ

s:t::
I0i ¼ INi ¼ 0; i ¼ 1; . . . ;M ;

Ij	1i þ xj 	 Iji ¼ dji ; j ¼ 1; . . . ;N ; i ¼ 1; . . . ;M ;
Iji P 0; xj integer; j ¼ 1; . . . ;N ; i ¼ 1; . . . ;M :
Moreover, we denote by EðR1;N1 ; . . . ;R1;NM Þ the Pareto-optimal set of the original problem P . Accordingly,
if x 2 EðR1;N1 ; . . . ;R1;NM Þ then either x 2 EðL1;N1 ; . . . ; L1;NM Þ or x 62 EðL1;N1 ; . . . ; L1;NM Þ. In the first case,

LðxÞ ¼ ðL1;N1 ðxÞ; . . . ; L
1;N
M ðxÞÞ 2 LB and hence LðxÞ6RðxÞ, where RðxÞ was defined in (3). In the second case,

it must exist y such that y 2 EðL1;N1 ; . . . ; L1;NM Þ and LðyÞ6
6¼
LðxÞ: Thus, LðyÞ 2 LB and LðyÞ6RðxÞ. Therefore,

LB is an actual lower bound for problem P . �
6. Computational experience

This section is divided into two parts. In the first part, the Pareto-optimal set for ten randomly generated

problems are reported. On the other hand, the second part is devoted to test the efficiency of the two al-
gorithms, the MDP procedure and the Branch and Bound (B&B) approach, as a function of both the

number of scenarios and the number of periods.

To simplify the computational experiment, we have chosen the cost functions to be linear and the in-

ventory levels to be non-negative. Taking into account these assumptions, the problems have been solved

using the procedure given in the previous section.

In this part, Tables 1 and 2 show the input data for ten problems and the non-dominated plans with their

overall cost vectors, respectively. Table 1 is organized as follows: the first column indicates the number of

the problem, the rows represent the scenarios (Si represents the ith scenario) and the rest of columns give
for the different periods the values for the demand, unit holding cost and unit reorder cost, respectively.

Given that the final inventory vector is null, the unit carrying cost for the last period does not affect the

optimal solution, and hence it is denoted by x. This computational experience involves problems with two
scenarios and four periods up to problems with five scenarios and five periods. In Table 2, for each

problem, the efficient plans with their respective costs are allocated in consecutive cells of the same row.



Table 2

Pareto-optimal sets for the ten problems in Table 1

P1 f7; 2; 3g f8; 1; 3g f9; 0; 3g
ð51; 26Þ ð48; 31Þ ð45; 36Þ

P2 f7; 4; 4g f8; 3; 4g f9; 2; 4g f10; 1; 4g f11; 0; 4g
ð74; 62; 78Þ ð70; 62; 83Þ ð66; 62; 88Þ ð62; 62; 93Þ ð58; 62; 98Þ
f12; 0; 3g f13; 0; 2g f14; 0; 1g f15; 0; 0g
ð54; 67; 103Þ ð50; 72; 108Þ ð46; 77; 113Þ ð42; 82; 118Þ

P3 f7; 7; 1g f8; 6; 1g f9; 5; 1g f10; 4; 1g f11; 3; 1g
ð64; 69; 78; 35Þ ð61; 76; 81; 37Þ ð58; 83; 84; 39Þ ð55; 90; 87; 41Þ ð52; 97; 90; 43Þ
f12; 2; 1g f13; 1; 1g f14; 0; 1g
ð49; 104; 93; 45Þ ð46; 111; 96; 47Þ ð43; 118; 99; 49Þ

P4 f7; 5; 5; 3g f7; 6; 4; 3g f7; 7; 3; 3g f7; 8; 2; 3g f7; 9; 1; 3g
ð112; 116Þ ð111; 117Þ ð110; 118Þ ð109; 119Þ ð108; 120Þ
f7; 10; 0; 3g
ð107; 121Þ

P5 f6; 5; 5; 4g f7; 4; 5; 4g f8; 3; 5; 4g f9; 2; 5; 4g f10; 1; 5; 4g
ð70; 88; 49Þ ð68; 93; 55Þ ð66; 98; 61Þ ð64; 103; 67Þ ð62; 108; 73Þ
f11; 0; 5; 4g f12; 0; 4; 4g f13; 0; 3; 4g f14; 0; 2; 4g f15; 0; 1; 4g
ð60; 113; 79Þ ð59; 123; 88Þ ð58; 133; 97Þ ð57; 143; 106Þ ð56; 153; 115Þ
f16; 0; 0; 4g
ð55; 163; 124Þ

P6 f8; 4; 7; 5g f8; 5; 6; 5g f8; 6; 5; 5g f8; 7; 4; 5g f8; 8; 3; 5g
ð153; 116; 134; 110Þ ð152; 119; 139; 112Þ ð151; 122; 144; 114Þ ð150; 125; 149; 116Þ ð149; 128; 154; 118Þ
f8; 9; 2; 5g f8; 10; 1; 5g f8; 11; 0; 5g
ð148; 131; 159; 120Þ ð147; 134; 164; 122Þ ð146; 137; 169; 124Þ

P7 f11; 4; 4; 2g f12; 3; 4; 2g f13; 2; 4; 2g f14; 1; 4; 2g f15; 0; 4; 2g
ð132; 134; 112; 95; 107Þ ð132; 137; 116; 90; 106Þ ð132; 140; 120; 85; 105Þ ð132; 143; 124; 80; 104Þ ð132; 146; 128; 75; 103Þ
f16; 0; 3; 2g f17; 0; 2; 2g f18; 0; 1; 2g f19; 0; 0; 2g f20; 0; 0; 1g
ð138; 151; 132; 73; 102Þ ð144; 156; 136; 71; 101Þ ð150; 161; 140; 69; 100Þ ð156; 166; 144; 67; 99Þ ð163; 180; 151; 66; 101Þ
f21; 0; 0; 0g
ð170; 194; 158; 65; 103Þ

P8 f8; 2; 6; 5; 4g f9; 1; 6; 5; 4g f10; 0; 6; 5; 4g f11; 0; 5; 5; 4g f12; 0; 4; 5; 4g
ð167; 118; 117Þ ð172; 114; 122Þ ð177; 110; 127Þ ð187; 107; 137Þ ð197; 104; 147Þ
f13; 0; 3; 5; 4g f14; 0; 2; 5; 4g f15; 0; 1; 5; 4g f16; 0; 0; 5; 4g
ð207; 101; 157Þ ð217; 98; 167Þ ð227; 95; 177Þ ð237; 92; 187Þ

P9 f10; 4; 6; 2; 3g f10; 5; 5; 2; 3g f10; 6; 4; 2; 3g f10; 7; 3; 2; 3g f10; 8; 2; 2; 3g
ð139; 154; 159; 160Þ ð148; 152; 161; 164Þ ð157; 150; 163; 168Þ ð166; 148; 165; 172Þ ð175; 146; 167; 176Þ
f10; 9; 1; 2; 3g f10; 10; 0; 2; 3g f10; 4; 7; 1; 3g f10; 4; 8; 0; 3g f10; 4; 9; 0; 2g
ð184; 144; 169; 180Þ ð193; 142; 171; 184Þ ð135; 160; 164; 165Þ ð131; 166; 169; 170Þ ð129; 177; 177; 181Þ
f10; 4; 10; 0; 1g f10; 4; 11; 0; 0g
ð127; 188; 185; 192Þ ð125; 199; 193; 203Þ

P10 f8; 4; 1; 1; 1g f9; 3; 1; 1; 1g f10; 2; 1; 1; 1g f11; 1; 1; 1; 1g f12; 0; 1; 1; 1g
ð84; 89; 78; 96; 105Þ ð80; 97; 80; 96; 107Þ ð76; 105; 82; 96; 109Þ ð72; 113; 84; 96; 111Þ ð68; 121; 86; 96; 113Þ
f8; 5; 0; 1; 1g f9; 4; 0; 1; 1g f10; 3; 0; 1; 1g f11; 2; 0; 1; 1g f12; 1; 0; 1; 1g
ð87; 90; 75; 99; 105Þ ð83; 98; 77; 99; 107Þ ð79; 106; 79; 99; 109Þ ð75; 114; 81; 99; 111Þ ð71; 122; 83; 99; 113Þ
f13; 0; 0; 1; 1g
ð67; 130; 85; 99; 115Þ
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The MDP solution procedure was coded in C++ using LEDA libraries. The main difficulty to implement
this code was the storage requirement which increases with the difference ðD	max16 i6M fd1i gÞ. This dif-



Table 3

Comparison of running times (in sec.)

Scenarios ðMÞ Periods ðNÞ Average time (MDP) Average time (B&B)

2 3 7.08 4.98

2 4 8.90 0.66

2 5 24.67 12.80

3 3 19.93 13.25

3 4 11.23 1.24

3 5 2.76 0.63

4 3 10.70 4.65

4 4 15.94 5.90

4 5 22.85 1.46

5 3 20.54 5.00

5 4 76.47 13.15

5 5 17.06 11.28
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ficulty, known as curse of dimensionality, was already discussed by Villarreal and Karwan [22]. These

authors argued that as the number of objective functions increases so does the solution time. The problems

proposed in Table 1 were solved in a workstation HP 9000-712/80. Another interesting aspect of the

problem concerns its sensitivity. After several samples, we notice that slight changes in the input data make

the Pareto-optimal set to vary drastically.
The B&B scheme has been incorporated to the MDP procedure as follows: for each subproblem

P ðnþ 1; In1 ; . . . ; InMÞ, the LB set is obtained from calls to the ADBASE code developed by Steuer [18]. This
code gives the supported non-dominated solutions for continuous linear multicriteria problems. As a

consequence of both the input to and the output from the ADBASE code is file typed, conversions of the

form matrix(C++)-file(ADBASE) and file(ADBASE)-matrix(C++) are required. Moreover, since all the

parameters are integer and the constraints matrix is unimodular, the extreme solutions given by ADBASE

are integer-valued as well, i.e., feasible for P . Hence, as a result the non-dominated solutions associated to
the first subproblem are also considered as the initial UB for the original problem F ð1; ð0; . . . ; 0ÞÞ:
Now, we provide, in Table 3, the average running times for different instances of this problem. For each

pair ðM ;NÞ ten instances were run. The parameters have been generated according to the following values:
the total demand D ranges in the interval ½1; 1000�, the unit carrying and reorder costs vary between 1 and
100. The troubles in the computational experience arise as a consequence of the ADBASE limitations. As

the number of scenarios or periods increases so does the number of rows and columns in the constraint

matrix of the linear multiobjective problem and the problem becomes intractable. Therefore, only some

ðM ;NÞ combinations can be tested.
Our computational experiments show that the B&B scheme outperforms the MDP approach in all cases.

The small difference in some instances between the average running times of both procedures is due to each

subproblem in the B&B calls to the ADBASE code. Therefore, the bottleneck of the B&B procedure is just

the time required to obtain the LB set for each subproblem. In spite of this difficulty, the B&B results in
CPU times smaller than the MDP method.
7. Concluding remarks

In this article we introduce different algorithms to solve the multiscenario lot size problem. Throughout

the paper, the case with concave costs is discussed. The solution procedures for this case have been im-

plemented using the DMDMP approach and exploiting the dynamic lot size problem�s properties. More-
over, a B&B procedure has been implemented with a reasonably good behavior in most cases. It would be
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interesting to improve this procedure by finding LB sets that are not obtained from external routine, which
will decrease much more the running times of the B&B versus MDP.
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